新学術領域研「植物多能性幹細胞」

menu

研究成果 (総説) A01班

[すべて] [A01の成果] [A02の成果] 

2022

[44] 植物の環境適応戦略としての幹細胞化,
石川雅樹, 月刊「細胞」, 54, 6, 291 - 294, 2022.
[43] Preface to the special issue “Stem cell reformation in plants”,
Akira Iwase; Masaaki Umeda, Plant Biotechnology, 39, 1, 1 - 4, 2022.
[42] Division site determination during asymmetric cell division in plants,
Peishan Yi; Gohta Goshima, Plant Cell, 24, koac069, 2022.
[41] Fifteen compelling open questions in plant cell biology,
Adrienne H K Roeder; Marisa S Otegui; Ram Dixit; Charles T Anderson; Christine Faulkner; Yan Zhang; Maria J Harrison; Charlotte Kirchhelle; Gohta Goshima; Jeremy E Coate; Jeff J Doyle; Olivier Hamant; Keiko Sugimoto; Liam Dolan; Heather Meyer; David W Ehrhardt; Arezki Boudaoud; Carlos Messina, Plant Cell, 34, 1, 72 - 102, 2022.
[40] Molecular mechanisms of reprogramming of differentiated cells into stem cells in the moss Physcomitrium patens,
Masaki Ishikawa; Mitsuyasu Hasebe, Curr. Opin. Plant Biol., 65, , 2022.
[39] Evolution of root nodule symbiosis: Focusing on the transcriptional regulation from the genomic point of view,
Kai Battenberg; Makoto Hayashi, Plant Biotechnology, 39, 1, 79 - 83, 2022.

2021

[38] Interpreting cytokinin action as anterograde signaling and beyond,
Yoshihisa Ikeda; David Zalabák; Ivona Kubalová; Michaela Králová; Wolfram G. Brenner; Mitsuhiro Aida, Front. Plant Sci., 12, 641257, 2021.
[37] Leguminous nodule symbiosis involves recruitment of factors contributing to lateral root development,
Takashi Soyano; Meng Liu; Masayoshi Kawaguchi; Makoto Hayashi, Curr. Opin. Plant Biol., 59, 102000, 2021.
[36] イネの分げつ形成を開始する遺伝的しくみ,
田中若奈, アグリバイオ, 5, 4, 44 - 48, 2021.
[35] Microtubule Nucleation Pathways,
Gohta Goshima, Encyclopedia of Biological Chemistry III (Third Edition), 5, 547 - 553, 2021.
[34] Development and Molecular Genetics of Marchantia polymorpha,
Takayuki Kohchi; Katsuyuki T. Yamato; Kimitsune Ishizaki; Shohei Yamaoka; Ryuichi Nishihama, Annu. Rev. Plant Biol., 72, 677 - 702, 2021.
[33] Large-scale sequencing paves the way for genomic and genetic analyses in parasitic plants.,
Yoshida S.; Kee, Y-J., Curr. Opin. Biotech., 70, 248 - 254, 2021.
[32] 寄生植物の吸器形成と宿主侵入におけるエチレンの役割,
ツイ スンクイ; 吉田聡子, BSJ review, 12, 101 - 111, 2021.
[31] Symmetry and its transition in phyllotaxis,
Takaaki Yonekura; Munetaka Sugiyama, J. Plant Res., 134, 3, 417 - 430, 2021.
[30] Development and molecular genetics of Marchantia polymorpha,
Kohchi Takayuki; Yamato Katsuyuki T.; Ishizaki Kimitsune; Nishihama Ryuichi, Annu. Rev. Plant Biol., 72, 677 - 702, 2021.
[29] Cytokinin biosynthesis and transport for systemic nitrogen signaling,
Hitoshi Sakakibara, PLANT J., 105, 421 - 430, 2021.
[28] Strigolactone biosynthesis, transport and perception,
Kiyoshi Mashiguchi ; Yoshiya Seto; Shinjiro Yamaguchi, PLANT J., 105, 2, 335 - 350, 2021.
[27] 葉序の形態特徴量とパターン生成機構との関係,
米倉崇晃; 杉山宗隆, Plant Morphology, 33, 59 - 66, 2021.

2020

[26] 走査電子顕微鏡を用いた植物組織・細胞の新しい捉え方,
豊岡公徳; 若崎眞由美; 武田紀子; 佐藤繭子, Plant Morphology, 32, 3 - 9, 2020.
[25] 切片SEM観察法の植物試料への応用,
豊岡公徳; 若崎眞由美; 宮彩子; 佐藤繭子, 顕微鏡, 55, 1, 7 - 12, 2020.
[24] MirrorCLEM:シームレスな光-電子相関顕微鏡観察システム,
豊岡公徳, The HITACHI Scientific Instrument News, 63, 1, 5533 - 5538, 2020.
[23] How do plants transduce wound signals to induce tissue repair and organ regeneration?,
Momoko Ikeuchi; Bart Rymen; Keiko Sugimoto, Curr. Opin. Plant Biol., 57, 72 - 77, 2020.
[22] ストリゴラクトンの受容:加水分解の役割は?,
瀬戸義哉; 山口信次郎, 植物の生長調節, 55, 2, 110 - 115, 2020.
[21] ストライガのゲノム解析から見えてきた寄生植物の進化,
吉田聡子; 白須 賢, 植物の生長調節, 55, 2, 105 - 109, 2020.
[20] 植物のストリゴラクトン信号伝達メカニズム 加水分解酵素型受容体DWARF14の機能解析,
安井令; 瀬戸義哉; 山口信次郎, 化学と生物, 58, 12, 673 - 680, 2020.
[19] Orobanchaceae parasite–host interactions.,
Mutuku, J.M.; Cui, S.; Yoshida, S.; Shirasu, K., New Phytol., 230, 46 - 59, 2020.
[18] Gemma cup and gemma development in Marchantia polymorpha,
Hirotaka Kato; Yukiko Yasui; Kimitsune Ishizaki, New Phytol., 228, 2, 459 - 465, 2020.
[17] Cytoskeletal Control of Planar Polarity in Root Hair Development,
Hirotomo Takatsuka; Masaki Ito, Front. Plant Sci., 11, 580935, 2020.
[16] 庭の厄介者ゼニゴケがクローン個体をつくり繁殖する仕組み,
安居 佑季子; 石崎 公庸, 化学と生物, 58, 9, 502 - 504, 2020.
[15] Common Mechanisms of Developmental Reprogramming in Plants—Lessons From Regeneration, Symbiosis, and Parasitism,
Yasunori Ichihashi; Tsuneo Hakoyama; Akira Iwase; Ken Shirasu; Keiko Sugimoto; Makoto Hayashi, Front. Plant Sci., , 2020.
[14] クロマチン修飾を介して植物の分化細胞を幹細胞化する新規転写因子STEMIN,
石川雅樹, バイオサイエンスとインダストリー, 78, 3, 240 - 241, 2020.
[13] Apical stem cells sustaining prosperous evolution of land plants,
Ryuichi Nishihama; Satoshi Naramoto, J. Plant Res., 133, 279 - 282, 2020.
[12] Harnessing symbiotic plant–fungus interactions to unleash hidden forces from extreme plant ecosystems,
Marta-Marina Pérez-Alonso; Carmen Guerrero-Galán; Sandra S Scholz; Takatoshi Kiba; Hitoshi Sakakibara; Jutta Ludwig-Müller; Anne Krapp; Ralf Oelmüller; Jesús Vicente-Carbajosa; Stephan Pollmann, J. Exp. Bot., 71, 3865 - 3877, 2020.

2019

[11] 植物がもつ再生能力の秘密 – 分化細胞を幹細胞へと変化させる”ステミン遺伝子”の発見,
石川雅樹, academist Journal, , 2019.
[10] Quantitative and qualitative tuning of cytokinin actions for plant growth regulation,
Hitoshi Sakakibara, 植物の化学調節, 54, 2, 137 - 142, 2019.
[9] Haustorium inducing factors for parasitic Orobanchaceae,
Vincent Goyet; Syogo Wada; Songkui Cui; Takanori Wakatake; Ken Shirasu; Gregory Montiel; Philippe Simier; Satoko Yoshida, Front. Plant Sci., , 2019.
[8] Editorial overview: Cell division – from molecules to tissues,
Gohta Goshima; Yohanns Bellaïche, Curr Opin Cell Biol, 60, 3 - 5, 2019.
[7] Molecular Mechanisms of Plant Regeneration,
Momoko Ikeuchi; David S. Favero; Yuki Sakamoto; Akira Iwase; Duncan Coleman; Bart Rymen; Keiko Sugimoto, Annu. Rev. Plant Biol., 70, 377 - 406, 2019.

2018

[6] Multifaceted Cellular Reprogramming at the Crossroads Between Plant Development and Biotic Interactions,
Keiko Sugimoto; Lin Xu; Uta Paszkowski; Makoto Hayashi, Plant Cell Physiol., 59, 4, 651 - 655, 2018.
[5] 新しいモデル生物:苔類ゼニゴケ,
西浜竜一; 河内孝之, 領域融合レビュー, 7, e008, 2018.
[4] Microtubule nucleation and organization without centrosomes,
Peishan Yi; Gohta Goshima, Curr. Opin. Plant Biol., 46, 1 - 7, 2018.
[3] GREEN FLUORESCENT SEED, to Evaluate Vacuolar Trafficking in Arabidopsis Seeds,
Tomoo Shimada; Kentaro Fuji; Takuji Ichino; Ooi-Kock Teh; Yasuko Koumoto; Ikuko Hara-Nishimura, Methods in Molecular Biology, 1789, 1 - 7, 2018.
[2] Plant Vacuoles,
Tomoo Shimada; Junpei Takagi; Takuji Ichino; Makoto Shirakawa; Ikuko Hara-Nishimura, Annu. Rev. Plant Biol., 69, 123 - 145, 2018.

2017

[1] Cytokinin transporters: GO and STOP in signaling,
Joohyun Kang; Youngsook Lee; Hitoshi Sakakibara; Enrico Martinoia, Trends Plant Sci., 22, 6, 455 - 461, 2017.