• Japanese

Publication

Original papers and reviews

2023

Seki, M.*, Kuze, Y., Zhang, X., Kurotani, K., Notaguchi, M., Nishio, H., Kudoh, H., Suzaki, T., Yoshida, S., Sugano, S., Matsushita, T., Suzuki, T. (2024) An improved method for the highly specific detection of transcription start sites. Nucleic Acids Res, 52, 2-e7,[pubmed]

Cui, S., Inaba, S., Suzaki, T., Yoshida, S. (2023) Developing for nutrient uptake: Induced organogenesis in parasitic plants and root nodule symbiosis. Curr. Opin. Plant Biol. 76, 102473.

Kee, Y-J., Ogawa, S., Ichihashi, Y., Shirasu, K., Yoshida, S. (2023) Strigolactones in the rhizosphere communication: multiple molecules with diverse functions. Plant and Cell Physiol. 64, 955–966.

Chen X., Fang, D., Xu, Y., Duan, K., Yoshida, S., Yang, S. et al. (2023) Balanophora genomes display massively convergent evolution with other extreme holoparasites and provide novel insights into parasite–host interactions. Nature Plants 9: 1627–1642.

稲葉尚子、吉田聡子 (2023) 「寄生植物が宿主植物に寄生する機構」アグリバイオ vol. 7, 29-34

青木夏美、吉田聡子(2023)「寄生植物と宿主植物の相互作用におけるサイトカイニンの役割」植物の生長調節 vol. 58, 27-33

吉田聡子 (2023) 「寄生して生きる術―寄生植物の寄生メカニズム」科学 vol. 93

大津美奈、吉田聡子(2023)「Invisible world 小さな体で植物を操る線虫のはなし」現代化学 1月号 63-65

2022

Kee, Y-J., Ogawa, S., Ichihashi, Y., Shirasu, K., Yoshida, S. (2023) Strigolactones in the rhizosphere communication: multiple molecules with diverse functions. Plant and Cell Physiol. in press

Aoki, N., Cui, S., Ito, C., Kumaishi, K., Kobori, S., Ichihashi, Y., Yoshida, S. (2022) Phenolic signals for prehaustorium formation in Striga hermonthica. Front. Plant Sci. 13:1077996.[pubmed]

Aoki, N., Cui, S., Yoshida, S. (2022) Cytokinins induce prehaustoria coordinately with quinone signals in the parasitic plant Striga hermonthica. Plant Cell Physiol. 63, 1446-1456.[pubmed]

Ogawa, S., Cui, S., White, A.R.F., Nelson, D.C., Yoshida, S., Shirasu, K. (2022) Strigolactones are chemoattractants for host tropism in Orobanchaceae parasitic plants. Nature Comm. 13, 4653 [link]

Kokla, A., Leso, M., Zhang, X., Simura, J., Serivichyaswat, P.T., Cui, S., Ljung, K., Yoshida, S., Melnyk, C. W. (2022) Nitrogen represses haustoria formation through abscisic acid in the parasitic plant Phtheirospermum japonicum. Nature Comm. 13, 2976 doi: 10.1038/s41467-022-30550-x.

Greifenhagen, A., Braunstein, I., Pfannstiel, J., Yoshida, S., Shirasu, K., Schaller, A., Spallek, T. (2021) The Phtheirospermum japonicum isopentenyltransferase PjIPT1a regulates host cytokinin responses in Arabidopsis. New Phytol.232, 1582-1590 [link]

吉田聡子 (2023) 「寄生して生きる術―寄生植物の寄生メカニズム」科学 vol. 93

大津美奈、吉田聡子(2023)「Invisible world 小さな体で植物を操る線虫のはなし」現代化学 1月号 63-65

吉田聡子、白須賢 (2020) 「ストライガのゲノム解析から見えてきた寄生植物の進化」植物の生長調節, 55, 105-109

吉田聡子 (2019) 「ハマウツボ科寄生植物の寄生分子機構解明のための研究基盤の構築」B & I 77 (4), 20-24

吉田聡子* 白須賢 寄生植物の宿主認識と感染機構 (2018) 日植病報 84: 267-274 (総説、査読あり)

2021

Yoshida S., Kee, Y-J. (2021) Large-scale sequencing paves the way for genomic and genetic analyses in parasitic plants. Curr. Opin. Biotech. 70, 248-254.[pubmed]

Furuta, K. M., Xiang, L., Cui, S., Yoshida, S. (2021) Molecular dissection of haustorium development in Orobanchaceae parasitic plants. Plant Physiol. 186, 1424-1434. [pubmed]

Masumoto, N., Suzuki, Y., Cui, S., Wakazaki, M., Sato, M., Kumaishi, K., Shibata, A., Furuta, K. M., Ichihashi, Y., Shirasu, K., Toyooka, K., Sato, Y., Yoshida, S. (2021) Three-dimensional reconstructions of the internal structures of haustoria in parasitic Orobanchaceae. Plant Physiol. 185, 1429–1442 [link]

Ogawa, S., Wakatake, T., Spallek, T., Ishida, J.K., Sano, R., Kurata, T., Demura, T., Yoshida, S., Ichihashi, Y., Schaller, A., Shirasu, K. (2021) Subtilase activity in the intrusive cells mediates haustorium maturation in parasitic plants. Plant Physiol. 185, 1381-1394

ツイ スンクイ、吉田聡子 (2021)「寄生植物の吸器形成と宿主侵入におけるエチレンの役割」BSJ-Review vol. 12, 101-111

2020

Cui, S., Kubota, T., Nishiyama, T., Ishida, J. K., Shigenobu, S., Shibata, T. F., Toyoda, A., Hasebe, M., Shirasu, K., Yoshida, S. (2020). Ethylene signaling mediates host invasion by parasitic plants. Sci. Adv. 6(44):eabc2385 doi:10.1126/sciadv.abc2385. [pubmed]

Mutuku, J. M., Cui, S., Yoshida, S., Shirasu, K. (2020). Orobanchaceae parasite-host interactions. New Phytol. 230(1):46-59 doi:10.1111/nph.17083. [pubmed]

Wakatake, T., Ogawa, S., Yoshida, S., Shirasu, K. (2020) An auxin transport network underlies xylem bridge formation between the hemi-parasitic plant Phtheirospermum japonicum and host Arabidopsis. Development 147(14):dev187781. doi: 10.1242/dev.187781. [pubmed]

Kurotani, K-I, Wakatake T., Ichihashi, Y., Okayasu, K., Sawai, Y., Ogawa, S., Cui, S., Suzuki, T., Shirasu, K., Notaguchi, M. (2020) Host-parasite tissue adhesion by a secreted type of β-1,4-glucanase in the parasitic plant Phtheirospermum japonicum. Comm. Biol. 3, 407[link]

2019

Yoshida, S., Kim, S., Wafula, E. K., Tanskanen, J., Kim, Y.-M., Honaas, L., et al. (2019). Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism. Curr. Biol. doi:10.1016/j.cub.2019.07.086.[pubmed]

Goyet, V., Wada, S., Cui, S., Wakatake, T., Shirasu, K., Montiel, G., et al. (2019). Haustorium Inducing Factors for Parasitic Orobanchaceae. Front. Plant Sci. 10, 1–8. doi:10.3389/fpls.2019.01056.[pubmed]

Mutuku, J.M., Cui, S., C., Hori, Takeda, Y., Tobimatsu, Y., Nakabayashi, R., Mori, T., Saito, K., Demura, T., Umezawa, T., Yoshida, S., Shirasu, K. (2019) The Structural Integrity of Lignin Is Crucial for Resistance against Striga hermonthica Parasitism in Rice. Plant Physiol. 179. 1796-1809. [link]

Wada, S., Cui, S. and Yoshida, S. (2019) Reactive Oxygen Species (ROS) Generation Is Indispensable for Haustorium Formation of the Root Parasitic Plant Striga hermonthica. Frontiers Plant Sci. 10:328 doi: 10.3389/fpls.2019.00328. [pubmed]

2018

Cui S, Wada S, Tobimatsu Y, Takeda Y, Saucet SB, Takano T, Umezawa T, Shirasu K, Yoshida S. (2018) Host lignin composition affects haustorium induction in the parasitic plants Phtheirospermum japonicum and Striga hermonthica. New Phytol. 218(2):710-723 10.1111/nph.15033. [pubmed]

Wakatake, T., Yoshida, S., Shirasu, K. (2018) Induced cell fate transitions at multiple cell layers configure haustorium development in parasitic plants. Development 145,dev1614848. doi: 10.1242/dev.164848. [pubmed]

2017

Cui, S., Suzaki, T., Tominaga-wada, R., Yoshida, S. (2017) Regulation and functional diversification of root hairs. Sem. Cell. Dev. Biol. [link]

Ichihashi Y, Kusano M, Kobayashi M, Suetsugu K, Yoshida S, Wakatake T, Kumaishi K, Shibata A, Saito K, Shirasu K.(2017) Transcriptomic and Metabolomic Reprogramming from Roots to Haustoria in the Parasitic Plant, Thesium chinense. Plant Cell Physiol. 59(4):724-733 10.1093/pcp/pcx200.[pubmed]

Ishida JK, Yoshida S, Shirasu K. (2017) Quinone oxidoreductase 2 is involved in haustorium development of the parasitic plant Phtheirospermum japonicum. Plant Signal Behav. doi: 10.1080/15592324.2017.1319029. [pubmed]

Ishida JK, Yoshida S, Shirasu K. (2017) Haustorium induction assay of the parasitic plant Phtheirospermum japonicum. Bio-protocol 7: e2260 [link]

Spallek, T., Melnyk, C. W., Wakatake, T., Zhang, J., Sakamoto, Y., Kiba, T., Yoshida, S., Matsunaga, S., Sakakibara, H., Shirasu, K. (2017) Inter-species hormonal control of host root morphology by parasitic plants, PNAS, 114:5283-5288. [link][press release]

Ito, S., Yamagami, D., Umehara, M., Hanada, A., Yoshida, S., Sasaki, Y., Yajima, S., Kyozuka, J., Ueguchi-Tanaka, M., Matsuoka, M., Shirasu, K., Yamaguchi, S., Asami, T. (2017) Regulation of strigolactone biosynthesis by gibberellin signaling, Plant Physiol. 174:1250-1259. [link]

2016

Ishida, J.K., Wakatake, T., Yoshida, S., Takebayashi, Y., Kasahara, H., Wafula, E., dePamphilis, C. W., Namba, S., Shirasu K. (2016) Local auxin biosynthesis mediated by a YUCCA flavin monooxygenase regulates haustorium development in the parasitic plant Phtheirospermum japonicum. Plant Cell, 28, 1795-1814 [pubmed]

Cui, S., Wakatake, T., Hashimoto, K., Saucet, S. B., Toyooka, K., Yoshida S.*, Shirasu K. (2016) Haustorial hairs are specialized root hairs that support parasitism in the facultative parasitic plant, Phtheirospermum japonicum. Plant Physiol., 170:1492-1503 [pubmed]

Yoshida, S., Cui, S., Ichihashi, Y., Shirasu, K. (2016) The Haustorium, a Specialized Invasive Organ in Parasitic Plants. Ann. Rev. Plant Biol. 67:643-67 [pubmed]

若竹崇雅、吉田聡子、白須賢 「根寄生植物の寄生メカニズム」生物の科学 遺伝 vol.70, 289-293 (日本語総説)

若竹崇雅、吉田聡子、白須 賢 「寄生植物コシオガマの吸器形成機構」BSJ-Review vol. 7, 241-249

2015

Conn, C. E., Bythell-Douglas, R., Neumann, D., Yoshida, S., Whittington, B., Westwood, J. H., Shirasu, K., Bond, C. S., Dyer, K.A., Nelson, D. C. (2015) Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 349, 540-543 [pubmed]

Mutuku, J. M., Yoshida, S., Shimizu, T., Ichihashi, Y., Wakatake, T., Seo, M., Takahashi, A., Shirasu, K. (2015) The WRKY45-dependent signaling pathway is required for resistance against Striga parasitism. Plant Physiol. 168, 1152-1163 [pubmed]

Mitsumasu, K., Seto, Y. and Yoshida, S.* (2015) Apoplastic interactions between plants and plant root intruders. Front. Plant Sci. 6, 617 [pubmed]

Ichihashi, Y., Mutuku, J. M., Yoshida, S. and Shirasu, K. (2015) Transcriptomics exposes the uniqueness of parasitic plants. Brief. Func. Genomics, doi: 10.1093/bfgp/elv001 [pubmed]

2014

吉田聡子、若竹崇雅、白須賢 (2014)「遺伝子から見た根寄生植物の寄生戦略」植物生長調節 vol. 49, 66-73

2012

Yoshida, S., Kameoka, H., Tempo, M., Akiyama, K., Umehara, M., Yamaguchi, S., Hayashi, H., Kyozuka, J., Shirasu K. (2012) The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytologist 196, 1208-1216 [pubmed]

Herder, G. D., Yoshida, S., Antolín-Llovera, M., Ried M., Parniske, M. (2012) Lotus japonicus E3 ligase SEVEN IN ABSENTIA4 destabilizes the symbiosis receptor-.like kinase SYMRK and negatively regulates rhizobial infection. Plant Cell, 24, 1691-1707 [pubmed]

Yoshida, S. and Shirasu, S. (2012) Plants that attack plants: molecular elucidation of plant parasitism. Curr. Opin. Plant Biol. 15, 708-713 [pubmed ]

2011

Ishida, J. K., Yoshida, S., Ito, M., Namba, S., Shirasu, K.(2011) Agrobacterium rhizogenes-mediated transformation of the parasitic plant Phtheirospermum japonicum. PLoS One 6, e25802 [pubmed ]

吉田聡子、白須賢 (2011)  「宿主植物から寄生植物への水平伝播の発見」化学と生物, 49, 518

2010

Yoshida, S., Maruyama, S., Nozaki, H., Shirasu K. (2010) Horizontal gene transfer by the parasitic plant Striga hermonthica. Science 328, 1128 [pubmed ]

Yoshida, S., Ishida, J. K., Kamal, N., Ali, A. M., Namba, S., Shirasu, K. (2010) A full-length enriched cDNA library and expressed sequence tag analysis of the parasitic weed, Striga hermonthica. BMC Plant Biology 10:55 [pubmed ]

白須賢、吉田聡子 (2010)「植物を襲う植物―寄生植物ストライガとの攻防」生物の科学・遺伝64: 46~51

~2009

Yoshida, S., Shirasu, K. (2009) Multiple layers of incompatibility to the parasitic witchweed, Striga hermonthica. New Phytologist 183, 180-189.

Yano*, K., Yoshida*, S., Muller*, J., Singh, S., Imaizumi-Anraku, H., Vickers, K., Markmann, K., White, C., Schuller, B., Sato, S., Asamizu, E., Tabata, S., Perry, J., Wang, T., Kawaguchi, M., Hayashi, M., Parniske, M. (2008) CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc. Nat. Acad. Sci. 105, 20540-20545 (*equally contributed authors) [pubmed ]

Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J., Yamaguchi, S. (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195-200. [pubmed ]

Tirichine, L., Imaizumi-Anraku, H., Yoshida, S., Murakami, Y., Madsen, L. H., Miwa, H., Nakagawa, T., Sandal, N., A. S., Albrektsen, Kawaguchi, M., Downie, A., Sato, S., Tabata, S., Kouchi, H., Parniske, M., Kawasaki, S., Stougaard, J. (2006) Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441, 1153-1156. [pubmed ]

Sandal, N., Petersen, T. R., Murray, J. et al. (以下54名、内33番目)(2006) Genetics of symbiosis in Lotus japonicus: recombinant inbred lines, comparative genetic maps and map position of 35 symbiotic loci. Mol. Plant Microbe Int.,19, 373-382 [pubmed ]

Yoshida, S., Parniske, M. (2005) Regulation of plant symbiosis receptor kinase through serine and threonine phosphorylation. J. Biol. Chem., 280, 9203-9209. [pubmed ]

Fujiki, Y., Nakagawa, Y., Furumoto, T., Yoshida, S., Biswal, B., Ito, M., Watanabe, A., Nishida, I. (2005) Response to darkness of late-responsive dark-inducible genes is positively regulated by leaf age and negatively regulated by calmodulin-antagonist-sensitive signalling in Arabidopsis thaliana. Plant Cell Physiol., 46, 1741-1746. [pubmed ]

Yoshida, S., Parniske, M. (2005) Regulatory mechanisms of SYMRK kinase activity. In Biological Nitrogen Fixation, Sustainable Agriculture and the Environment: Proceedings of the 14th International Nitrogen Fixation Congress, Edited by Wang, Y.-P.; Lin, M.; Tian, Z.-X.; Elmerich, C.; Newton, W.E. pp183-186 [pubmed ]

Perry, J. A., Wang, T. L., Welham, T. J., Gardner, S., Pike, J. M., Yoshida, S., Parniske, M (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol., 131, 866-871. [pubmed ]

Yoshida, S. (2003) Molecular regulation of leaf senescence. Curr. Opin. Plant Biol., 6, 79-8 [pubmed ]

Yoshida, S., Ito, M., Callis, J., Nishida, I., Watanabe, A. (2002) A delayed leaf senescence mutant is defective in arginyl-tRNA:protein arginyltransferase, a component of the N-end rule pathway in Arabidopsis. The Plant Journal, 32, 129-137.[pubmed ]

Stracke, S., Kistner, C., Yoshida, S., Mulder, L., Sato, S., Kaneko, T., Tabata, S., Sandal, N., Stougaard, J., Szczyglowski, K., Parniske, M. (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature, 417, 959-962.[pubmed ]

Yoshida, S., Ito, M., Nishida, I., Watanabe, A. (2002) Identification of a novel gene HYS1/CPR5 that has a repressive role in the induction of leaf senescence and pathogen-defense responses in Arabidopsis thaliana. The Plant Journal, 29, 427-437.[pubmed ]

Yoshida, S., Ito, M., Nishida, I., Watanabe, A. (2001) Isolation and RNA gel blot analysis of genes that could serve as potential molecular markers for leaf senescence in Arabidopsis thaliana. Plant Cell Physiol., 42, 172-180.[pubmed ]