PUBLICATION

  1. Fukuda, T., and Shiozaki, K. (2018). The Rag GTPase-Ragulator complex attenuates TOR complex 1 signaling in fission yeast. Autophagy , 1-2. PMID: 29799770 ;  DOI: 10.1080/15548627.2018.1444313
  2. Chia, K.H., Fukuda, T., Sofyantoro, F., Matsuda, T., Amai, T., and Shiozaki, K. (2017). Ragulator and GATOR1 complexes promote fission yeast growth by attenuating TOR complex 1 through Rag GTPases. eLife 6, e30880. PMID: 29199950 ;  DOI: 10.7554/eLife.30880
  3. Tatebe, H., and Shiozaki, K. (2017). Evolutionary Conservation of the Components in the TOR Signaling Pathways. Biomolecules 7, 77. PMID: 29104218 ; DOI: 10.3390/biom7040077
  4. Tatebe, H., Murayama, S., Yonekura, T., Hatano, T., Richter, D., Furuya, T., ... & Shiozaki, K. (2017). Substrate specificity of TOR complex 2 is determined by a ubiquitin-fold domain of the Sin1 subunit. eLife 6, e19594. PMID: 28264193 ; DOI: 10.7554/eLife.19594 ; 記者発表
  5. Tatebe, H., and Shiozaki, K. (2017). PP2C. In Encyclopedia of Signaling Molecules (Second Edition), S. Choi, eds. (New York: Springer). DOI: 10.1007/978-1-4614-6438-9_249-1
  6. Hatano, T., Morigasaki, S., Tatebe, H., Ikeda, K., and Shiozaki, K. (2015). Fission yeast Ryh1 GTPase activates TOR Complex 2 in response to glucose. Cell Cycle. DOI: 10.1080/15384101.2014.1000215
  7. Furuita, K., Kataoka, S., Sugiki, T., Hattori, Y., Kobayashi, N., Ikegami, T., Shiozaki, K., Fujiwara, T., and Kojima, C. (2014). Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints. J Biomol NMR.
  8. Kataoka, S., Furuita, K., Hattori, Y., Kobayashi, N., Ikegami, T., Shiozaki, K., Fujiwara, T., and Kojima, C. (2014). (1)H, (15)N and (13)C resonance assignments of the conserved region in the middle domain of S. pombe Sin1 protein. Biomol NMR Assign.
  9. Morigasaki, S., and Shiozaki, K. (2013). Phosphorelay-dependent and -independent regulation of MAPKKK by the Mcs4 response regulator in fission yeast. Commun Integr Biol 6, e25020. DOI: 10.4161/cib.25020
  10. Morigasaki, S., Ikner, A., Tatebe, H., and Shiozaki, K. (2013). Response regulator-mediated MAPKKK heteromer promotes stress signaling to the Spc1 MAPK in fission yeast. Mol Biol Cell 24, 1083-092. DOI: 10.1091/mbc.E12-10-0727
  11. Ikeda, A., Iizuka, T., Maekubo, N., Aono, R., Kikuchi, J., Akiyama, M., Konishi, T., Ogawa, T., Ishida-Kitagawa, N., et al. (2013). Cyclodextrin complexed [60]fullerene derivatives with high levels of photodynamic activity by long wavelength excitation. ACS Med Chem Lett 4, 752-56.
  12. Komeda, C., Ikeda, A., Kikuchi, J., Ishida-Kitagawa, N., Tatebe, H., Shiozaki, K., and Akiyama, M. (2013). A photo-triggerable drug carrier based on cleavage of PEG lipids by photosensitiser-generated reactive singlet oxygen. Org Biomol Chem 11, 2567-570.
  13. Tatebe, H., and Shiozaki, K. (2012). PP2C. In Encyclopedia of Signaling Molecules, S. Choi, eds. (New York: Springer). DOI: 10.1007/978-1-4419-0461-4_249
  14. Tatebe, H., and Shiozaki, K. (2010). Protein Serine/Threonine-Phosphatase 2C (PP2C). In Handbook of Cell Signaling (Second Edition), R.A. Bradshaw, and E.A. Dennis, eds. DOI: 10.1016/B978-0-12-374145-5.00091-7
  15. Tatebe, H., Morigasaki, S., Murayama, S.,  Zeng, C.T. and Shiozaki, K. (2010). Rab-family GTPase regulates TOR complex 2 signaling in fission yeast. Curr Biol 20, 1975-1982. DOI: 10.1016/j.cub.2010.10.026
  16. Tatebe, H. and Shiozaki, K. (2010). Rab small GTPase emerges as a regulator of TOR complex 2. Small GTPases 1, 180-182. DOI: 10.4161/sgtp.1.3.14936
  17. Morigasaki, S. and Shiozaki, K. (2010). Two-component signaling to the stress MAP kinase cascade in fission yeast. Meth. Enzymol., 471, 279-289. DOI: 10.1016/S0076-6879(10)71015-6
  18. Shiozaki, K. (2009). Nutrition-minded cell cycle. Sci Signal 2, pe74 DOI: 10.1126/scisignal.296pe74
  19. Morigasaki, S., Shimada, K., Ikner, A., Yanagida, M. and Shiozaki, K. (2008). Glycolytic enzyme GAPDH promotes peroxide stress signaling through multistep phosphorelay to a MAPK cascade. Mol Cell 30, 108-113. DOI: 10.1016/j.molcel.2008.01.017 ; Faculty of 1000 Biology http://www.f1000biology.com “Must Read”
  20. Tatebe, H., Nakano, K., Maximo, R. and Shiozaki, K. (2008). Pom1 DYRK regulates localization of the Rga4 GAP to ensure bipolar activation of Cdc42 in fission yeast. Curr Biol 18, 322-330. DOI: 10.1016/j.cub.2008.02.005
  21. Ikeda, K., Morigasaki, S., Tatebe, H., Tamanoi, F. and Shiozaki, K. (2008). Fission yeast TOR complex 2 activates the AGC-family Gad8 kinase essential for stress resistance and cell cycle control. Cell Cycle 7, 358-364. DOI: 10.4161/cc.7.3.5245
  22. Morigasaki, S. and Shiozaki, K. (2008). Glycolytic enzyme in oxidative stress signaling ? another function of GAPDH. Chem Biol 46, 740-742 (in Japanese).
  23. Wang, L. and Shiozaki, K. (2006). The fission yeast stress MAPK cascade regulates the pmp3+ gene that encodes a highly conserved plasma membrane protein. FEBS Lett 580, 2409-2413. DOI: 10.1016/j.febslet.2006.03.065
  24. Tatebe, H., Shimada, K., Uzawa, S. Morigasaki, S. and Shiozaki, K. (2005). Wsh3 is a novel cell-end factor essential for bipolar distribution of Tea1 and protects cell polarity under environmental stress in S. pombe. Curr Biol 15, 1006-1015. DOI: 10.1016/j.cub.2005.04.061; Faculty of 1000 Biology http://www.f1000biology.com “Recommended”
  25. Wang, L., Shimada, K. Morishita, M. and Shiozaki, K. (2005). Response of fission yeast to toxic cations involves cooperative action of the stress-activated protein kinase Spc1/Sty1 and the Hal4 protein kinase. Mol Cell Biol 25, 3945-3955. DOI: 10.1128/MCB.25.10.3945-3955.2005; Faculty of 1000 Biology http://www.f1000biology.com “Must Read”
  26. Ikner, A. and Shiozaki, K. (2005). Yeast signaling pathways in the oxidative stress response. Mutation Res 569, 13-27. DOI: 10.1016/j.mrfmmm.2004.09.006
  27. Santos, J.L., and Shiozaki, K. (2004). Phosphorelay signaling in yeast in response to changes in osmolarity. Sci STKE 2004, tr12. DOI: 10.1126/stke.2622004tr12
  28. Tatebe, H. and Shiozaki, K. (2003). Identification of Cdc37 as a novel regulator of the stress-responsive mitogen-activated protein kinase. Mol Cell Biol 23, 5132-5142. DOI: 10.1128/MCB.23.15.5132-5142.2003
  29. Tatebe, H. and Shiozaki, K. (2003). Protein serine/threonine-phosphatase 2C (PP2C). In Handbook of Cell Signaling, Bradshaw, R.A. and Dennis, E.A., eds. (Elsevier Science) 637-640. DOI: 10.1016/B978-012124546-7/50468-X
  30. Kawasaki, L., Sanchez, O., Shiozaki, K. and Aguirre, J. (2002). SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol. Microbiol. 45, 1153-1163.
  31. Nguyen, A. N., Ikner, A., Shiozaki, M., Warren, S. and Shiozaki, K. (2002). Cytoplasmic localization of Wis1 MAPKKK by nuclear export signal is important for nuclear targeting of Spc1/Sty1 MAPK in fission yeast. Mol. Biol. Cell 13, 2651-2663.
  32. Nguyen, A. N. and Shiozaki, K. (2002). MAPping stress survival in yeasts: from the cell surface to the nucleus. In Cell and Molecular Responses to Stress, Storey, K.B. and Storey, J.M., eds., Vol. 3: Sensing, Signaling and Cell Adaptation. (Elsevier Science) 75-90.
  33. Santos, J. L. and Shiozaki, K. (2001). Fungal histidine kinases. Science’s STKEhttp://stke.sciencemag.org/cgi/content/full/OC_sigtrans;2001/98/re1
  34. Nguyen, A. N., Lee, A., Place, W. and Shiozaki, K. (2000). Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol. Biol. Cell 11, 1169-1181. Science’s STKE Editor’s Choice http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2000/27/tw8
  35. Nguyen, A. N. and Shiozaki, K. (1999). Heat shock-induced activation of stress MAP kinase is regulated by threonine- and tyrosine-specific phosphatases. Genes Dev. 13, 1653-1663.
  36. Shiozaki, K. (1999). MAP kinase cascade that transmits environmental signals to the nucleus. Exp. Med. 17, 119-123 (in Japanese).
  37. Shiozaki, K., Shiozaki, M. and Russell, P. (1998). Heat stress activates fission yeast Spc1/Sty1 MAPK by a MEKK-independent mechanism. Mol. Biol. Cell 9, 1339-1349.
  38. Gaits, F., Degols, G., Shiozaki, K. and Russell, P. (1998). Phosphorylation and association with the transcription factor Atf1 regulate localization of Spc1/Sty1 stress-activated kinase in fission yeast. Genes Dev. 12, 1464-1473.
  39. Shiozaki, K. (1998). Negative regulation of the stress-activated protein kinase pathway by protein phosphatases. Prot. Nuc. Acid Enzyme, 43, 1055-1061 (in Japanese).
  40. Gaits, F., Shiozaki, K. and Russell, P. (1997). Protein phosphatase 2C acts independently of stress-activated kinase cascade to regulate the stress response in fission yeast. J. Biol. Chem. 272, 17873-17879.
  41. Shiozaki, K., Shiozaki, M. and Russell, P. (1997). Mcs4 mitotic catastrophe suppressor regulates the fission yeast cell cycle through the Wik1-Wis1-Spc1 kinase cascade. Mol. Biol. Cell 8, 409-419.
  42. Shiozaki, K. and Russell, P. (1997). Stress-activated protein kinase pathway in cell cycle control of fission yeast. Meth. Enzymol. 283, 506-520.
  43. Shiozaki, K. and Russell, P. (1997). Expression, purification and analyses of cell-cycle regulatory proteins in S. pombe. In Foreign gene expression in Schizosaccharomyces pombe (Biotechnology Intelligence Unit), Y. Giga-Hama, ed. (Springer-Verlag) 133-148.
  44. Wu, L., Shiozaki, K., Aligue, R. and Russell, P. (1996). Spatial organization of the Nim1-Wee1-Cdc2 mitotic control network in Schizosaccharomyces pombe. Mol. Biol. Cell 7, 1749-1758.
  45. Shiozaki, K. and Russell, P. (1996). Conjugation, meiosis and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes. Dev. 10, 2276-2288.
  46. Degols, G., Shiozaki, K. and Russell, P. (1996). Activation and regulation of the Spc1 stress-activated protein kinase in Schizosaccharomyces pombe. Mol. Cell. Biol. 16, 2870-2877.
  47. Shiozaki, K. and Russell, P. (1995). Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 378, 739-743.
  48. Shiozaki, K. and Russell, P. (1995). Counteractive roles of protein phosphatase 2C (PP2C) and a MAP kinase kinase homolog in the osmoregulation of fission yeast. EMBO J. 14, 492-502.
  49. Shiozaki, K. and Russell, P. (1995). Multiple type 2C phosphatase genes functioning in fission yeast signal transduction pathways. Adv. Prot. Phosphatases 9, 249-262.
  50. Shiozaki, K. and Russell, P. (1994). Cellular function of protein phosphatase 2C in yeast. Cell. Mol. Biol. Res. 40, 241-243.
  51. Shiozaki, K., Akhavan-Niaki, H., McGowan, C. H. and Russell, P. (1994). Protein phosphatase 2C, encoded by ptc1+, is important in the heat shock response of Schizosaccharomyces pombe. Mol. Cell. Biol. 14, 3742-3751.
  52. Shiozaki, K. and Yanagida, M. (1993). Functional dissection of DNA topoisomerase II. In Molecular Biology of DNA topoisomerases and its application to chemotherapy. T. Andoh, H. Ikeda and M. Oguro, ed. (CRC Press, Boca Raton), 57-64.
  53. Shiozaki, K. and Yanagida, M. (1992). Functional dissection of the phosphorylated termini of fission yeast DNA topoisomerase II. J. Cell Biol. 119, 1023-1036.
  54. Shiozaki, K. and Yanagida, M. (1991). A functional 125-kDa core polypeptide of fission yeast DNA topoisomerase II. Mol. Cell. Biol. 11, 6093-6102.
  55. Yanagida, M., Yamano, H., Stone, E. M., Kinoshita, N., Yoshida, T. and Shiozaki, K. (1991). Protein phosphatases in cell division: how vital are they? Princess Takamatsu Symp. 22, 137-144.
  56. Uemura, T., Morino, K., Uzawa, S., Shiozaki, K. and Yanagida, M. (1987). Cloning and sequencing of Schizosaccharomyces pombe DNA topoisomerase I gene, and effect of gene disruption. Nuc. Acids Res. 15, 9727-9739.
  57. Uemura, T., Ohkura, H., Adachi, Y., Morino, K., Shiozaki, K. and Yanagida, M. (1987). DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell 50, 917-925.

Page Top