【Original Articles】
- D. Watanabe*, M. Kumano, Y. Sugimoto, H. Takagi; Spontaneous attenuation of alcoholic fermentation via the dysfunction of Cyc8p in Saccharomyces cerevisiae; Int. J. Mol. Sci. 25(1): 304 (2024)
- H. Iwase, Y. Yamamoto, A. Yamada, K. Kawai, S. Oiki, D. Watanabe, B. Mikami, R. Takase, W. Hashimoto*; Crystal structures of Lacticaseibacillus 4-deoxy-L-threo-5-hexosuloseuronate ketol-isomerase KduI in complex with substrate analogs; J. Appl. Glycosci. 70(4): 99-107 (2023)
- D. Watanabe*, M. Kawashima, N. Yoshioka, Y. Sugimoto, H. Takagi; Rational design of alcoholic fermentation targeting extracellular carbon; NPJ Sci. Food 7(1): 37 (2023)
- D. Watanabe, W. Hashimoto*; Adaptation of yeast Saccharomyces cerevisiae to grape-skin environment; Sci. Rep. 13: 9279 (2023)
- K. Anamizu, R. Takase, M. Hio, D. Watanabe, B. Mikami, W. Hashimoto*; Substrate size-dependent conformational changes of bacterial pectin-binding protein crucial for chemotaxis and assimilation; Sci. Rep. 12: 12653 (2022)
- S. Yabuuchi, S. Oiki, S. Minami, R. Takase, D. Watanabe, W. Hashimoto*; Enhanced propagation of Granulicatella adiacens from human oral microbiota by hyaluronan; Sci. Rep. 12: 10948 (2022)
- S. Nakatsuji, K. Okumura, R. Takase, D. Watanabe, B. Mikami, and W. Hashimoto*; Crystal structures of EfeB and EfeO in a bacterial siderophore-independent iron transport system; Biochem. Biophys. Res. Commun. 594: 124-130 (2022)
- T. Chadani, S. Ohnuki, A. Isogai, T. Goshima, M. Kashima, F. Ghanegolmohammadi, T. Nishi, D. Hirata, D. Watanabe, K. Kitamoto, T. Akao, and Y. Ohya*; Genome editing to generate sake yeast strains with eight mutations that confer excellent brewing characteristics; Cells 10(6): 1299 (2021)
- T. Murakami, M. Watanabe, M. Takaki, H. Suetsugu-Sasaki, D. Watanabe, T. Goshima, H. Fukuda, H. Shimoi, and T. Akao*; Isolation of novel alcohol-tolerant spontaneous mutant strains from sake yeast Kyokai no. 6 and no. 7, and their brewing characteristics; J. Brew. Soc. Japan 116(2): 131-141 (2021) [Japanese]
- R. Tanahashi, T. S. N. Afiah, A. Nishimura, D. Watanabe, and H. Takagi*; The C2 domain of the ubiquitin ligase Rsp5 is required for ubiquitination of the endocytic protein Rvs167 upon change of nitrogen source; FEMS Yeast Res. 20(7): foaa058 (2020)
- H. Sugiura, A. Nagase, S. Oiki, B. Mikami, D. Watanabe, and W. Hashimoto*; Bacterial inducible expression of plant cell wall-binding protein YesO through conflict between Glycine max and saprophytic Bacillus subtilis; Sci. Rep. 10(1): 18691 (2020)
- M. Kanai*, T. Kawata, T. Morimoto, M. Mizunuma, D. Watanabe, T. Akao, T. Fujii, and H. Iefuji; The sake yeast YHR032W/ERC1 allele contributes to the regulation of the tetrahydrofolate content in the folate synthetic pathway in sake yeast strains; Biosci. Biotechnol. Biochem. 84(5): 1073-1076 (2020)
- S. Nakata, M. Hio, R. Takase, S. Kawai, D. Watanabe, and W. Hashimoto*; Polyunsaturated fatty acids-enriched lipid from reduced sugar alcohol mannitol by marine yeast Rhodosporidiobolus fluvialis Y2; Biochem. Biophys. Res. Commun. 526(4): 1138-1142 (2020)
- N. S. B. Mat Nanyan, D. Watanabe, Y. Sugimoto, and H. Takagi*; Effect of the deubiquitination enzyme gene UBP6 on the stress-responsive transcription factor Msn2-mediated control of the amino acid permease Gnp1 in yeast. J. Biosci. Bioeng. 129(4): 423-427 (2020)
- Y. Mukai*, Y. Kamei, X. Liu, S. Jiang, Y. Sugimoto, N. S. B. Mat Nanyan, D. Watanabe, and H. Takagi*; Proline metabolism regulates replicative lifespan in the yeast Saccharomyces cerevisiae; Microb. Cell 6(10): 482-490 (2019)
- N. S. B. Mat Nanyan†, D. Watanabe†, Y. Sugimoto, and H. Takagi*; Involvement of the stress-responsive transcription factor gene MSN2 in the control of amino acid uptake in Saccharomyces cerevisiae; FEMS Yeast Res.19(5): foz052 (2019) [†equally contributed]
- D. Watanabe, S. Tashiro, D. Shintani, Y. Sugimoto, A. Iwami, Y. Kajiwara, H. Takashita, and H. Takagi*; Loss of Rim15p in shochu yeast alters carbon utilization during barley shochu fermentation; Biosci. Biotechnol. Biochem. 83(8): 1594-1597 (2019)
- M. Ohashi, R. Nasuno, D. Watanabe, and H. Takagi*; Stable N-acetyltransferase Mpr1 improves ethanol productivity in the sake yeast Saccharomyces cerevisiae; J. Ind. Microbiol. Biotechnol. 46(7): 1039-1045 (2019)
- T. Abe, Y. Toyokawa, Y. Sugimoto, H. Azuma, K. Tsukahara, R. Nasuno, D. Watanabe, M. Tsukahara*, and H. Takagi*; Characterization of a new Saccharomyces cerevisiae isolated from hibiscus flower and its mutant with l-leucine accumulation for awamori brewing; Front. Genet. 10: 490 (2019)
- H. Shimoi*, Y. Hanazumi, N. Kawamura, M. Yamada, S. Shimizu, T. Suzuki, D. Watanabe, and T. Akao; Meiotic chromosomal recombination defect in sake yeasts; J. Biosci. Bioeng. 127(2): 190-196 (2019)
- D. Watanabe*, T. Kajihara, Y. Sugimoto, K. Takagi, M. Mizuno, Y. Zhou, J. Chen, K. Takeda, H. Tatebe, K. Shiozaki, N. Nakazawa, S. Izawa, T. Akao, H. Shimoi, T. Maeda, and H. Takagi; Nutrient signaling via the TORC1-Greatwall-PP2AB55δ pathway is responsible for the high initial rates of alcoholic fermentation in sake yeast strains of Saccharomyces cerevisiae; Appl. Environ. Microbiol. 85(1): e02083-18 (2019)
- M. Oomuro*, D. Watanabe, Y. Sugimoto, T. Kato, Y. Motoyama, T. Watanabe, and H. Takagi; Accumulation of intracellular S-adenosylmethionine increases the fermentation rate of bottom-fermenting brewer’s yeast during high-gravity brewing; J. Biosci. Bioeng. 126(6): 736-741 (2018)
- D. Watanabe*, M. Kumano, Y. Sugimoto, M. Ito, M. Ohashi, K. Sunada, T. Takahashi, T. Yamada, and H. Takagi; Metabolic switching of sake yeast by kimoto lactic acid bacteria through the [GAR+] non-genetic element; J. Biosci. Bioeng. 126(5): 624-629 (2018)
- T. Akao*, Y. Zhou, D. Watanabe, N. Okazaki, and H. Shimoi; Development of DNA markers to differentiate good Kyokai sake yeast and other yeast strains; J. Brew. Soc. Japan 113(10): 631-641 (2018) [Japanese]
- D. Watanabe, H. Sekiguchi, Y. Sugimoto, A. Nagasawa, N. Kida, and H. Takagi*; Importance of proteasome gene expression during model dough fermentation after preservation of baker’s yeast cells by freezing; Appl. Environ. Microbiol. 84(12): e00406-18 (2018)
- N. Takpho, D. Watanabe, and H. Takagi*; Valine biosynthesis in Saccharomyces cerevisiae is regulated by the mitochondrial branched-chain amino acid aminotransferase Bat1; Microb. Cell 5(6): 293-299 (2018)
- N. Takpho, D. Watanabe, and H. Takagi*; High-level production of valine by expression of the feedback inhibition-insensitive acetohydroxyacid synthase in Saccharomyces cerevisiae; Metab. Eng. 46: 60-67 (2018)
- A. Watcharawipas, D. Watanabe, and H. Takagi*; Enhanced sodium acetate tolerance in Saccharomyces cerevisiae by the Thr255Ala mutation of the ubiquitin ligase Rsp5; FEMS Yeast Res. 17(8): fox083 (2017)
- S. Ohnuki, H. Okada, A. Friedrich, Y. Kanno, T. Goshima, H. Hasuda, M. Inahashi, N. Okazaki, H. Tamura, R. Nakamura, D. Hirata, H. Fukuda, H. Shimoi, K. Kitamoto, D. Watanabe, J. Schacherer, T. Akao*, and Y. Ohya*; Phenotypic diagnosis of lineage and differentiation during sake yeast breeding; G3: Genes Genom. Genet. 7(8): 2807-2820 (2017)
- D. Watanabe, A. Kaneko, Y. Sugimoto, S. Ohnuki, H. Takagi, and Y. Ohya*; Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions; J. Biosci. Bioeng. 123(2): 183-189 (2017)
- M. Kanai*, T. Kawata, Y. Yoshida, Y. Kita, T. Ogawa, M. Mizunuma, D. Watanabe, H. Shimoi, A. Mizuno, O. Yamada, T. Fujii, and H. Iefuji; Sake yeast YHR032W/ERC1 haplotype contributes to high S-adenosylmethionine accumulation in sake yeast strains; J. Biosci. Bioeng. 123(1): 8-14 (2017)
- A. Tsolmonbaatar, K. Hashida, Y. Sugimoto, D. Watanabe, S. Furukawa, and H. Takagi*; Isolation of baker’s yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses; Int. J. Food Microbiol. 238: 233-240 (2016)
- M. Oomuro*, T. Kato, Y. Zhou, D. Watanabe, Y. Motoyama, H. Yamagishi, T. Akao, and M. Aizawa; Defective quiescence entry promotes the fermentation performance of bottom-fermenting brewer’s yeast; J. Biosci. Bioeng. 122(5): 577-582 (2016)
- I. Nishida, D. Watanabe, and H. Takagi*; Putative mitochondrial α-ketoglutarate- dependent dioxygenase Fmp12 controls utilization of proline as an energy source in Saccharomyces cerevisiae; Microb. Cell 3(10): 522-528 (2016)
- Y. Tatehashi, D. Watanabe, and H. Takagi*; γ-Glutamyl kinase is involved in selective autophagy of ribosomes in Saccharomyces cerevisiae; FEBS Lett. 590(17): 2906-2914 (2016)
- I. Nishida†, D. Watanabe†, A. Tsolmonbaatar, T. Kaino, I. Ohtsu, and H. Takagi*; Vacuolar amino acid transporters upregulated by exogenous proline and involved in cellular localization of proline in Saccharomyces cerevisiae. J. Gen. Appl. Microbiol. 62(3): 132-139 (2016) [†equally contributed]
- Y. Yoshikawa, R. Nasuno, N. Kawahara, A. Nishimura, D. Watanabe, and H. Takagi*; Regulatory mechanism of the flavoprotein Tah18-dependent nitric oxide synthesis and cell death in yeast. Nitric Oxide 57: 85-91 (2016)
- R. Nasuno, S. Hirase, S. Norifune, D. Watanabe, and H. Takagi*; Structure-based molecular design for thermostabilization of N-acetyltransferase Mpr1 involved in a novel pathway of l-arginine synthesis in yeast; J. Biochem. 159(2): 271-277 (2016)
- R. I. Astuti†, D. Watanabe†, and H. Takagi*; Nitric oxide signaling and its role in oxidative stress response in Schizosaccharomyces pombe. Nitric Oxide52: 29-40 (2016) [†equally contributed]
- D. Watanabe, Y. Zhou, A. Hirata, Y. Sugimoto, K. Takagi, T. Akao, Y. Ohya, H. Takagi, and H. Shimoi*; Inhibitory role of Greatwall-like protein kinase Rim15p in alcoholic fermentation via upregulating the UDP-glucose synthesis pathway in Saccharomyces cerevisiae; Appl. Environ. Microbiol. 82(1): 340-351 (2016)
- E. Funahashi, K. Saiki, K. Honda, Y. Sugiura, Y. Kawano, I. Ohtsu*, D. Watanabe, Y. Wakabayashi, T. Abe, T. Nakanishi, M. Suematsu, and H. Takagi; Finding of thiosulfate pathway for synthesis of organic sulfur compounds in Saccharomyces cerevisiae and improvement of ethanol production; J. Biosci. Bioeng. 120(6): 666-669 (2015)
- D. Watanabe, H. Murai, R. Tanahashi, K. Nakamura, T. Sasaki, and H. Takagi*; Cooperative and selective roles of the WW domains of the yeast Nedd4-like ubiquitin ligase Rsp5 in the recognition of the arrestin-like adaptors Bul1 and Bul2; Biochem. Biophys. Res. Commun. 463(1-2): 76-81 (2015)
- S. Hirayama, M. Shimizu, N. Tsuchiya, S. Furukawa, D. Watanabe, H. Shimoi, H. Takagi, H. Ogihara, and Y. Morinaga*; Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11; J. Biosci. Bioeng. 119(5): 532-537 (2015)
- I. Wijayanti†, D. Watanabe†, S. Oshiro, and H. Takagi*; Isolation and functional analysis of yeast ubiquitin ligase Rsp5 variants that alleviate the toxicity of human α-synuclein; J. Biochem.157(4): 251-260 (2015) [†equally contributed]
- H. Takagi*, K. Hashida, D. Watanabe, R. Nasuno, M. Ohashi, T. Iha, M. Nezuo, and M. Tsukahara; Isolation and characterization of awamori yeast mutants with l-leucine accumulation that overproduce isoamyl alcohol; J. Biosci. Bioeng. 119(2): 140-147 (2015)
- K. Uehara*, J. Watanabe, T. Akao, D. Watanabe, Y. Mogi, and H. Shimoi; Screening of high-level 4-hydroxy-2 (or 5)-ethyl-5 (or 2)-methyl-3(2H)-furanone-producing strains from a collection of gene deletion mutants of Saccharomyces cerevisiae; Appl. Environ. Microbiol. 81(1): 453-460 (2015)
- T. Shiga, N. Yoshida, Y. Shimizu, E. Suzuki, T. Sasaki, D. Watanabe, and H. Takagi*; Quality control of plasma membrane proteins by Saccharomyces cerevisiae Nedd4-like ubiquitin ligase Rsp5p under environmental stress conditions; Eukaryot. Cell 13(9): 1191-1199 (2014)
- D. Watanabe, R. Kikushima, M. Aitoku, A. Nishimura, I. Ohtsu, R. Nasuno, and H. Takagi*; Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae; Microb. Cell 1(7): 241-246 (2014)
- S. Uesugi, D. Watanabe, M. Kitajima, R. Watanabe, Y. Kawamura, M. Ohnishi, H. Takagi, and K. Kimura*; Calcineurin inhibitors suppress the high-temperature stress sensitivity of the yeast ubiquitin ligase Rsp5 mutant: a new method of screening for calcineurin inhibitors; FEMS Yeast Res. 14(4): 567-574 (2014)
- T. Inaba, D. Watanabe, Y. Yoshiyama, K. Tanaka, J. Ogawa, H. Takagi, H. Shimoi, and J. Shima*; An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses; AMB Express 3(1): 74 (2013)
- D. Watanabe, N. Hashimoto, M. Mizuno, Y. Zhou, T. Akao, and H. Shimoi*; Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae; Biosci. Biotechnol. Biochem. 77(11): 2255-2262 (2013)
- T. Inai†, D. Watanabe†, Y. Zhou, R. Fukada, T. Akao, J. Shima, H. Takagi, and H. Shimoi*; Rim15p-mediated regulation of sucrose utilization during molasses fermentation using Saccharomyces cerevisiae strain PE-2; J. Biosci. Bioeng.116(5): 591-594 (2013) [†equally contributed]
- K. Wakabayashi, A. Isogai*, D. Watanabe, A. Fujita, and S. Sudo; Involvement of methionine salvage pathway genes of Saccharomyces cerevisiae in the production of precursor compounds of dimethyl trisulfide (DMTS); J. Biosci. Bioeng. 116(4): 475-479 (2013)
- D. Watanabe, Y. Araki, Y. Zhou, N. Maeya, T. Akao, and H. Shimoi*; A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates in Saccharomyces cerevisiae sake yeast strains; Appl. Environ. Microbiol. 78(11): 4008-4016 (2013)
- Y. Sasano†, D. Watanabe†, K. Ukibe, T. Inai, I. Ohtsu, H. Shimoi, and H. Takagi*; Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production; J. Biosci. Bioeng. 113(4): 451-455 (2012) [†equally contributed]
- C. Noguchi†, D. Watanabe†, Y. Zhou, T. Akao, and H. Shimoi*; Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains; Appl. Environ. Microbiol.78(2): 385-392 (2012) [†equally contributed]
- D. Watanabe, S. Nogami, Y. Ohya, Y. Kanno, Y. Zhou, T. Akao, and H. Shimoi*; Ethanol fermentation driven by elevated expression of the G1 cyclin gene CLN3 in sake yeast; J. Biosci. Bioeng. 112(6): 577-582 (2011)
- T. Akao, I. Yashiro, A. Hosoyama, H. Kitagaki, H. Horikawa, D. Watanabe, R. Akada, Y. Ando, S. Harashima, T. Inoue, Y. Inoue, S. Kajiwara, K. Kitamoto, N. Kitamoto, O. Kobayashi, S. Kuhara, T. Masubuchi, H. Mizoguchi, Y. Nakao, A. Nakazato, M. Namise, T. Oba, T. Ogata, A. Ohta, M. Sato, S. Shibasaki, Y. Takatsume, S. Tanimoto, H. Tsuboi, A. Nishimura, K. Yoda, T. Ishikawa, K. Iwashita, N. Fujita, and H. Shimoi*; Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7; DNA Res. 18(6): 423-434 (2011)
- D. Watanabe, T. Ota, F. Nitta, T. Akao, and H. Shimoi*; Automatic measurement of sake fermentation kinetics using a multi-channel gas monitor system; J. Biosci. Bioeng. 112(1): 54-57 (2011)
- H. Urbanczyk, C. Noguchi, H. Wu, D. Watanabe, T. Akao, H. Takagi, and H. Shimoi*; Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation; J. Biosci. Bioeng. 112(1): 44-48 (2011)
- D. Watanabe, H. Wu, C. Noguchi, Y. Zhou, T. Akao, and H. Shimoi*; Enhancement of the initial rate of ethanol fermentation due to dysfunction of yeast stress response components Msn2p and/or Msn4p; Appl. Environ. Microbiol. 77(3): 934-941 (2011)
- M. Watanabe, D. Watanabe, S. Nogami, S. Morishita, and Y. Ohya*; Comprehensive and quantitative analysis of yeast deletion mutants defective in apical and isotropic bud growth; Curr. Genet. 55(4): 365-380 (2009)
- M. Watanabe, D. Watanabe, T. Akao, and H. Shimoi*; Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing; J. Biosci. Bioeng. 107(5): 516-518 (2009)
- M. Suzuki, Y. Asada, D. Watanabe, and Y. Ohya*; Cell shape and growth of budding yeast cells in restrictive microenvironments; Yeast 21(12): 983-989 (2004)
- T. L. Saito*, M. Ohtani, H. Sawai, F. Sano, A. Saka, D. Watanabe, M. Yukawa, Y. Ohya, and S. Morishita; SCMD: Saccharomyces cerevisiae morphological database; Nucleic Acids Res. 32(Database issue): D319-D322 (2004)
- M. Sekiya-Kawasaki, M. Abe, A. Saka, D. Watanabe, K. Kono, M. Minemura-Asakawa, S. Ishihara, T. Watanabe, and Y. Ohya*; Dissection of upstream regulatory components of the Rho1p effector, 1,3-β-glucan synthase, in Saccharomyces cerevisiae; Genetics 162(2): 663-676 (2002)
- T. Utsugi, M. Minemura, A. Hirata, M. Abe, D. Watanabe, and Y. Ohya*; Movement of yeast 1,3-β-glucan synthase is essential for uniform cell wall synthesis; Genes Cells 7(1): 1-9 (2002)
- D. Watanabe, M. Abe, and Y. Ohya*; Yeast Lrg1p acts as a specialized RhoGAP regulating 1,3-β-glucan synthesis; Yeast 18(10): 943-951 (2001)
【Review Articles】(English only)
- D. Watanabe; Sake yeast symbiosis with lactic acid bacteria and alcoholic fermentation; Biosci. Biotechnol. Biochem. 88: 237-241 (2024)
- D. Watanabe and H. Takagi; Yeast prion-based metabolic reprogramming induced by bacteria in fermented foods; FEMS Yeast Res. 19: foz061 (2019)
- A. Watcharawipas, D. Watanabe, and H. Takagi; Sodium acetate tolerance in Saccharomyces cerevisiae and the ubiquitin ligase Rsp5; Front. Microbiol. 9: 2495 (2018)
- D. Watanabe and H. Takagi; Pleiotropic functions of the yeast Greatwall-family protein kinase Rim15p: a novel target for the control of alcoholic fermentation; Biosci. Biotech. Biochem. 81: 1061-1068 (2017)
- D. Watanabe, H. Takagi, and H. Shimoi; Mechanism of High Alcoholic Fermentation Ability of Sake Yeast; ”Stress Biology of Yeasts and Fungi: Applications for Industrial Brewing and Fermentation” H. Takagi and H. Kitagaki (eds.) p.59-75, Springer (2015)