Laboratories

Molecular Microbiology and Genetics

Outline of Research and Education

Global warming resulting from elevated CO2 and global energy supply problems have been in the limelight in recent years. As these problems originate from rapid economic expansion and regional instability in parts of the world, broad knowledge of global economic systems as well as R&D is necessary to solve these problems. Fundamental research employing microbial functions to tackle adverse effects of global climate change and mitigate energy supply problems is carried out in our laboratory.

Major Research Topics

Biorefinery

A biorefinery is a concept which describes production of chemicals and fuels from renewable biomass via biological processes. Biorefinery R&D is considered of national strategic importance to the U.S.A. (Figure 1). A biorefinery can be divided into two processes: a saccharification process to hydrolyze biomass to sugars, and a bioconversion process to produce chemicals and fuels from the sugars. We have pioneered, as a bioconversion technology to produce chemicals and fuels, a highly-efficient “growth-arrested bioprocess” based on a novel concept (Figure 2). It is based on Corynebacteria that are widely used in industrial amino acid production. Key to the high efficiency is the productivity of artificially growth-arrested microbial cells, cells with which we are evaluating production of organic acids and biofuels. To efficiently produce these products, the cells are tailored for the production of a particular product using post genome technologies like transcriptomics, proteomics and metabolome analyses (Figure 3).

Bioenergy and green chemicals production

Having established the fundamental technology to produce bioethanol from non-food biomass, we are now partnering with the automobile and petrochemical industries to explore commercial application. We have also developed the platform technology to produce biobutanol, the expected next-generation biofuel, as well as a variety of green chemicals such as organic acids, alcohols and aromatic compounds from which diverse polymer raw materials used in various industries are produced.

References

  1. Tsuge Y. et al., J Biosci Bioeng, (in press)
  2. Kogure T. et al., Appl Microbiol Biotechnol, (Mini-Review)(in press)
  3. Maeda T. et al., Mol Microbiol, 108, 578-594, 2018
  4. Hasegawa S et al., J Microbiol Methods, 146, 13-15, 2018
  5. Kitade Y. et al., Appl Environ Microbiol, 84, e02587-17, 2018
  6. Toyoda K. et al., Mol Microbiol, 107, 312-329, 2018
  7. Oide S. et al., FEBS J, 284, 4298-4313, 2017
  8. Kuge T. et al., Appl Microbiol Biotechnol 101, 5019-5032, 2017
  9. Maeda T. et al., J Bacteriol, 199, e00798-16, 2017
  10. Hasegawa S. et al., Appl Environ Microbiol, 83, e02638-16, 2017
  11. Kogure T. et al., Metab Eng, 38, 204-216, 2016
  12. Kubota T. et al., Metab Eng, 38, 322-330, 2016
  13. Toyoda K. et al., Mol Microbiol, 100, 486-509, 2016
  14. Maeda T. et al., Mol Microbiol, 99, 1149-1166, 2016
  15. Toyoda K. et al., Appl Microbiol Biotechnol, 100, 45-60, 2016
  16. Jojima T. et al., Bioengineered, 6, 328-334, 2015
  17. Kuge T. et al., J Bacteriol, 197, 3788-3796, 2015
  18. Tanaka Y. et al., J Bacteriol, 197, 3307-3316, 2015
  19. Watanabe A. et al., Appl Environ Microbiol, 81, 4173-4183, 2015
  20. Tsuge Y. et al., Appl Microbiol Biotechnol, 99, 4679-4689, 2015
  21. Tsuge Y. et al., Appl Microbiol Biotechnol, 99, 5573–5582, 2015
  22. Oide S. et al., Appl Environ Microbiol, 81, 2284-2298, 2015
  23. Teramoto H. et al., Appl Microbiol Biotechnol, 99, 3505-3517, 2015
  24. Takemoto N. et al., Nucleic Acids Res, 43, 520-529, 2015
  25. Kubota T. et al., Microbiology, 161, 254-263, 2015
  26. Toyoda K. et al., J Bacteriol, 197, 483-496, 2015
  27. Jojima T. et al., Appl Microbiol Biotechnol, 99, 1165-1172, 2015
  28. Jojima T. et al., Appl Microbiol Biotechnol, 99, 1427-1433, 2015
  29. Tanaka Y. et al., J Bacteriol, 196, 3249-3258, 2014
  30. Kuge T. et al., J Bacteriol, 196, 2242-2254, 2014
  31. Kubota T. et al., Mol Microbiol, 92, 356-368, 2014
  32. Takemoto N. et al., Appl Microbiol Biotechnol, 98, 4159-4168, 2014
  33. Nishimura T. et al., J Bacteriol, 196, 60-69, 2014
  34. Yamamoto S. et al., Biotechnol Bioeng, 110, 2938-2948, 2013
  35. Tsuge Y. et al., Appl Microbiol Biotechnol, 97, 6693-6703, 2013
  36. Okibe N. et al., J Appl Microbiol, 115, 495-508, 2013
  37. Teramoto H. et al., FEBS J, 280, 3298-3312, 2013
  38. Kitade Y. et al., Appl Microbiol Biotechnol, 97, 8219-8226, 2013
  39. Toyoda K. et al., J Bacteriol, 195, 1718-1726, 2013
  40. Kubota T. et al., Appl Microbiol Biotechnol, 97, 8139-8149, 2013
  41. Hasegawa S. et al., Appl Environ Microbiol, 79, 1250-1257, 2013
  42. Watanabe K. et al., Appl Microbiol Biotechnol, 97, 4917-4926, 2013
Fig.1
Fig.1 Biorefinery concept
Fig.2 Novel features of the RITE Bioprocess
Fig.2 Novel features of the RITE Bioprocess
Fig.3 Breeding of recombinant strains using system biology
Fig.3 Breeding of recombinant strains using system biology
Back to Top