Laboratories

Molecular Microbiology and Genetics

Outline of Research and Education

Global warming resulting from elevated CO2 and global energy supply problems have been in the limelight in recent years. As these problems originate from rapid economic expansion and regional instability in parts of the world, broad knowledge of global economic systems as well as R&D is necessary to solve these problems. Fundamental research employing microbial functions to tackle adverse effects of global climate change and mitigate energy supply problems is carried out in our laboratory.

Major Research Topics

Biorefinery

A biorefinery is a concept which describes production of chemicals and fuels from renewable biomass via biological processes. Biorefinery R&D is considered of national strategic importance to the U.S.A. (Figure 1). A biorefinery can be divided into two processes: a saccharification process to hydrolyze biomass to sugars, and a bioconversion process to produce chemicals and fuels from the sugars. We have pioneered, as a bioconversion technology to produce chemicals and fuels, a highly-efficient “growth-arrested bioprocess” based on a novel concept (Figure 2). It is based on Corynebacteria that are widely used in industrial amino acid production. Key to the high efficiency is the productivity of artificially growth-arrested microbial cells, cells with which we are evaluating production of organic acids and biofuels. To efficiently produce these products, the cells are tailored for the production of a particular product using post genome technologies like transcriptomics, proteomics and metabolome analyses (Figure 3).

Bioenergy and green chemicals production

Having established the fundamental technology to produce bioethanol from non-food biomass, we are now partnering with the automobile and petrochemical industries to explore commercial application. We have also developed the platform technology to produce biobutanol, the expected next-generation biofuel, as well as a variety of green chemicals such as organic acids, alcohols and aromatic compounds from which diverse polymer raw materials used in various industries are produced.

References

  1. Maeda T. et al., J Bacteriol, (in press)
  2. Hasegawa S. et al., Appl Environ Microbiol, (in press)
  3. Kuge T. et al., Appl Microbiol Biotechnol 101, 5019-5032, 2017
  4. Kogure T. et al., Metab Eng, 38, 204-216, 2016
  5. Kubota T. et al., Metab Eng, 38, 322-330, 2016
  6. Toyoda K. et al., Mol Microbiol, 100, 486-509, 2016
  7. Maeda T. et al., Mol Microbiol, 99, 1149-1166, 2016
  8. Toyoda K. et al., Appl Microbiol Biotechnol, 100, 45-60, 2016
  9. Jojima T. et al., Bioengineered, 6, 328-334, 2015
  10. Kuge T. et al., J Bacteriol, 197, 3788-3796, 2015
  11. Tanaka Y. et al., J Bacteriol, 197, 3307-3316, 2015
  12. Watanabe A. et al., Appl Environ Microbiol, 81, 4173-4183, 2015
  13. Tsuge Y. et al., Appl Microbiol Biotechnol, 99, 4679-4689, 2015
  14. Tsuge Y. et al., Appl Microbiol Biotechnol, 99, 5573–5582, 2015
  15. Oide S. et al., Appl Environ Microbiol, 81, 2284-2298, 2015
  16. Teramoto H. et al., Appl Microbiol Biotechnol, 99, 3505-3517, 2015
  17. Takemoto N. et al., Nucleic Acids Res, 43, 520-529, 2015
  18. Kubota T. et al., Microbiology, 161, 254-263, 2015
  19. Toyoda K. et al., J Bacteriol, 197, 483-496, 2015
  20. Jojima T. et al., Appl Microbiol Biotechnol, 99, 1165-1172, 2015
  21. Jojima T. et al., Appl Microbiol Biotechnol, 99, 1427-1433, 2015
  22. Tanaka Y. et al., J Bacteriol, 196, 3249-3258, 2014
  23. Kuge T. et al., J Bacteriol, 196, 2242-2254, 2014
  24. Kubota T. et al., Mol Microbiol, 92, 356-368, 2014
  25. Takemoto N. et al., Appl Microbiol Biotechnol, 98, 4159-4168, 2014
  26. Nishimura T. et al., J Bacteriol, 196, 60-69, 2014
  27. Yamamoto S. et al., Biotechnol Bioeng, 110, 2938-2948, 2013
  28. Tsuge Y. et al., Appl Microbiol Biotechnol, 97, 6693-6703, 2013
  29. Okibe N. et al., J Appl Microbiol, 115, 495-508, 2013
  30. Teramoto H. et al., FEBS J, 280, 3298-3312, 2013
  31. Kitade Y. et al., Appl Microbiol Biotechnol, 97, 8219-8226, 2013
  32. Toyoda K. et al., J Bacteriol, 195, 1718-1726, 2013
  33. Kubota T. et al., Appl Microbiol Biotechnol, 97, 8139-8149, 2013
  34. Hasegawa S. et al., Appl Environ Microbiol, 79, 1250-1257, 2013
  35. Watanabe K. et al., Appl Microbiol Biotechnol, 97, 4917-4926, 2013
  36. Jojima T. et al., FEBS Lett, 586, 4228-4232, 2012
  37. Teramoto H. et al., FEBS J, 279, 4385-4397, 2012
  38. Tanaka Y. et al., J Bacteriol, 194, 6527-6536, 2012
  39. Teramoto H. et al., Biosci Biotechnol Biochem, 76, 1952-1958, 2012
  40. Uematsu K. et al., J Plant Physiol, 169, 1454-1462, 2012
  41. Vertès A.A. et al., Annu Rev Microbiol, 66, 521-550, 2012
  42. Yamamoto S. et al., Appl Environ Microbiol, 78, 4447-4457, 2012
  43. Uematsu K. et al., Biosci Biotechnol Biochem, 76, 1315-1321, 2012
  44. Teramoto H. et al., Microbiology, 158, 975-982, 2012
  45. Uematsu K. et al., J Exp Bot, 63, 3001-3009, 2012
  46. Hasegawa S. et al., Appl Environ Microbiol, 78, 865-875, 2012
  47. Peng X. et al., J Ind Microbiol Biotechnol, 39, 255-268, 2012
Fig.1
Fig.1 Biorefinery concept
Fig.2 Novel features of the RITE Bioprocess
Fig.2 Novel features of the RITE Bioprocess
Fig.3 Breeding of recombinant strains using system biology
Fig.3 Breeding of recombinant strains using system biology
Back to Top