Laboratories

Cell Signaling

Outline of Research and Education

Our research aims to elucidate intracellular signaling networks that sense and transmit diverse extracellular stimuli, with particular focus on the signaling pathways involved in cancerous cell proliferation and metabolic syndromes such as diabetes. To identify and analyze novel components of the signaling pathways, the studies utilize the fission yeast Schizosaccharomyces pombe, which has been successfully used as a genetically amenable model system to investigate cellular regulatory mechanisms conserved from yeast to humans. Students in our laboratory are encouraged to design multifaceted approaches that logically combine research tools in molecular genetics, cell biology and biochemistry. Originally established in 1998 at University of California-Davis, our laboratory has been training researchers that serve the international scientific community.

Major Research Topics

TOR (Target Of Rapamycin) signaling pathway

TOR kinase forms two distinct protein complexes called TORC1 and TORC2, which mediate extracellular signals, such as nutrients and insulin/growth factors (Fig.1). Deregulation of the TOR pathways is implicated in cancers, neurological disorders, diabetes and aging; therefore, comprehensive understanding of the TOR pathways is crucial for the development of informed strategies to treat these diseases.

Stress-responsive MAP kinase cascade

Stress-activated protein kinase (SAPK) is a member of the MAP kinase family that plays pivotal roles in cellular stress responses, including those of cancer cells exposed to cytotoxic therapies. Our goal is to discover cellular “stress sensors” that transmit signals to induce activation of SAPK.

References

  1. Fukuda T. and Shiozaki K., Autophagy, 14, 1105-1106, 2018
  2. Chia K. H. et al., eLife, 6, e30880, 2017
  3. Tatebe H. and Shiozaki K., Biomolecules, 7, 77, 2017
  4. Tatebe H. et al., eLife, 6, e19594, 2017
  5. Hatano T. et al., Cell Cycle, 14, 848-856, 2015
  6. Fruita K. et al., J. Biomol. NMR, 61, 55-64, 2015
  7. Morigasaki S. and Shiozaki K.,Commun. Integr. Biol., 6, e25020, 2013
  8. Morigasaki S. et al., Mol. Biol. Cell, 23, 1083-1092, 2013
  9. Komeda C. et al., Biomol. Chem.11, 2567-2570, 2013
  10. Tatebe H. et al., Curr. Biol., 20, 1975-1982, 2010
  11. Tatebe H. and Shiozaki K., Small GTPases, 1, 180-182, 2010
  12. Morigasaki S. and Shiozaki K., Meth. Enzymol., 471, 279-289, 2009
  13. Shiozaki K., Sci. Signal., 2, pe74, 2009
  14. Morigasaki S. et al., Mol. Cell, 30, 108-113, 2008
  15. Tatebe H. et al., Curr. Biol., 18, 322- 330, 2008
  16. Ikeda K. et al., Cell Cycle, 7, 358-364, 2008
  17. Wang L. and Shiozaki K., FEBS Lett, 580, 2409-2413, 2006
  18. Tatebe H. et al., Curr. Biol., 15, 1006-1015, 2005
  19. Wang L. et al., Mol. Cell. Biol., 25, 3945-3955, 2005
  20. Ikner A. and Shiozaki K., Mutation Res., 569, 13-27, 2005
  21. Tatebe H. and Shiozaki K., Mol. Cell. Biol., 23, 5132-5142, 2003
  22. Nguyen A. N. et al., Mol. Biol. Cell., 13, 2651-2663, 2002
  23. Nguyen A. N. et al., Mol. Biol. Cell, 11, 1169-1181, 2000
  24. Nguyen A. N. and Shiozaki K., Genes Dev., 13, 1653-1663, 1999
  25. Shiozaki K., Shiozaki M. and Russell P., Mol. Biol. Cell, 9, 1339-1349,1998
  26. Shiozaki K., Shiozaki M. and Russell P., Mol. Biol. Cell, 8, 409-419,1997
  27. Shiozaki K, and Russell P., Meth. Enzymol., 283, 506-520,1997
  28. Shiozaki K. and Russell P., Genes. Dev., 10, 2276-2288, 1996
  29. Shiozaki K. and Russell P., Nature, 378, 739-743, 1995
  30. Shiozaki K. and Russell P., EMBO J., 14, 492-502, 1995
  31. Shiozaki K. et al., Mol. Cell. Biol., 14, 3742-3751, 1994
  32. Shiozaki K. and Yanagida M., J. Cell. Biol., 119, 1023-1036, 1992
  33. Shiozaki K. and Yanagida M., Mol. Cell. Biol., 11, 6093-6102, 1991
Fig.1
Fig. 1 The TORC1 and TORC2 signaling pathways integrate multiple stimuli to control cell proliferation.
Fig.2
Fig. 2 The structure of the TORC2 subunit Sin1, whose function has been elucidated through genetic analysis in fission yeast (background).
Back to Top